This paper proposes a lane marking detection method for automated driving in complex urban roads to be used with map-matching localization algorithms. First, a LiDAR based lane detection and map matching algorithm is explained and a lane marking detection algorithm using AVM (Around View Monitor) cameras is presented. The AVM camera based lane marking detection algorithm includes camera calibration, bird-eye view conversion, and lane marking detection. The two lane detection methods are combined and implemented as a part of a map-matching localization algorithm on an autonomous test vehicle. Multiple experiments on various test routes, including complex situations like driver's license exam stations, were performed to verify the performance of the lane marking detection in the map-matching algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    AVM / LiDAR sensor based lane marking detection method for automated driving on complex urban roads


    Beteiligte:
    Lee, Hyunsung (Autor:in) / Kim, Seonwook (Autor:in) / Park, Sungyoul (Autor:in) / Jeong, Yonghwan (Autor:in) / Lee, Hojoon (Autor:in) / Yi, Kyongsu (Autor:in)


    Erscheinungsdatum :

    01.06.2017


    Format / Umfang :

    759902 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    AVM/LiDAR Sensor Based Lane Marking Detection Method for Automated Driving on Complex Urban Roads

    Lee, Hyunsung / Kim, Seonwook / Park, Sungyoul et al. | British Library Conference Proceedings | 2017


    Simplified lane marking on Massachusetts roads

    Engineering Index Backfile | 1932


    LANE MARKING DETECTION SYSTEM AND LANE MARKING DETECTION METHOD

    TAKEMAE KASHU | Europäisches Patentamt | 2015

    Freier Zugriff

    LIDAR-Based Lane Marking Detection For Vehicle Positioning in an HD Map

    Ghallabi, Farouk / Nashashibi, Fawzi / El-Haj-Shhade, Ghayath et al. | IEEE | 2018