This paper explores development of adaptive digital twins (DT) for DC-DC converters using artificial neural networks (ANN). The proposed DT can adaptively correct internal state prediction error for power converters modeled by a standalone recurrent neural network (RNN). To examine the proposed DT, DC-DC boost converters under open and closed loop modes of operation have been targeted. The neural network design and training process is explained, and the trained digital twin networks are successfully tested using exact time domain models of the converters. Finally, using a cascaded ANN the adaptive capability of the DT to account for RNN prediction errors due to varying systems inputs is successfully implemented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Development of Adaptive Digital Twin for DC-DC converters using Artificial Neural Networks


    Beteiligte:
    Jessie, Benjamin (Autor:in) / Fahimi, Babak (Autor:in) / Balsara, Poras (Autor:in)


    Erscheinungsdatum :

    19.06.2024


    Format / Umfang :

    2086703 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Digital Twin Modeling of Power Electronic Converters

    Sado, Kerry / Hannum, Jack / Booth, Kristen | IEEE | 2023