This paper presents a advance approach for ship detection in satellite imagery utilizing a modified DeepLabV3+ architecture, specifically designed to overcome the challenges inherent in such data. The proposed model features an enhanced feature extraction process and a refined atrous spatial pyramid pooling (ASPP) module, which together improve the detection of ships across various sizes and shapes. Comprehensive experiments on publicly available satellite datasets reveal that the modified DeepLabV3+ significantly outperforms existing state-of-the-art methods, achieving an accuracy of 98%. These findings demonstrate the model's robust ability to identify and localize ships in complex maritime settings, offering promising potential for improved maritime situational awareness and operational efficiency.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Enhancing Ship Detection on Satellite Images with Modified DeepLabV3+




    Erscheinungsdatum :

    04.09.2024


    Format / Umfang :

    2666059 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Automatic ship detection in SAR satellite images: Performance assessment

    Stasolla, Mattia / Santamaria, Carlos / Mallorqui, Jordi J. et al. | IEEE | 2015


    Unmanned Driving System Based on DeepLabV3+ Semantic Segmentation

    Wang, Hongyu / Ma, Jiefei / Chi, Haifei | IEEE | 2021


    Low-power Ship Detection in Satellite Images Using Neuromorphic Hardware

    Lenz, Gregor / McLelland, Douglas | ArXiv | 2024

    Freier Zugriff

    Ship Detection in Optical Satellite Images Based on Sparse Representation

    Zhou, Haotian / Zhuang, Yin / Chen, Liang et al. | Springer Verlag | 2017