Use of computer vision on Unmanned Aerial Vehicles (UAV) has been a promising area of research given its potential applications in exploration, surveillance and security. Localization in indoor, unknown environments can become increasingly difficult due to irregularities or complete absence of GPS. Advent of small, light and high performance cameras and computing hardware has enabled design of autonomous systems. In this paper, the optic flow principle is employed for estimating two dimensional motion of the UAV using a downward facing monocular camera. Combining it with an ultrasonic sensor, UAV's three dimensional position is estimated. Position estimation and trajectory tracking have been performed and verified in a laboratory setup. All computations are carried out onboard the UAV using a miniature single board computer.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Visual odometry using optic flow for Unmanned Aerial Vehicles


    Beteiligte:
    More, Vikrant (Autor:in) / Kumar, Hitendra (Autor:in) / Kaingade, Sarthak (Autor:in) / Gaidhani, Pradeep (Autor:in) / Gupta, Nitin (Autor:in)


    Erscheinungsdatum :

    01.03.2015


    Format / Umfang :

    1531711 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Ultra Low-Power Visual Odometry for Nano-Scale Unmanned Aerial Vehicles

    Palossi, Daniele / Marongiu, Andrea / Benini, Luca | British Library Conference Proceedings | 2017


    Visual-Inertial Odometry for Unmanned Aerial Vehicle using Deep Learning

    Lee, Hongyun / McCrink, Matthew / Gregory, James W. | AIAA | 2019


    Reliability of visual inertial odometry on an unmanned aerial vehicle

    Setati Tiro / Maweni Thabisa / Botha Natasha | DOAJ | 2023

    Freier Zugriff

    Deployment of Reliable Visual Inertial Odometry Approaches for Unmanned Aerial Vehicles in Real-world Environment

    Bednar, Jan / Petrlik, Matej / Vivaldini, Kelen Cristiane Teixeira et al. | IEEE | 2022


    Deployment of Reliable Visual Inertial Odometry Approaches for Unmanned Aerial Vehicles in Real-world Environment

    Bednář, Jan / Petrlík, Matěj / Vivaldini, Kelen Cristiane Teixeira et al. | ArXiv | 2023

    Freier Zugriff