For robust object detection on LiDAR data, neural networks have to be trained on diverse datasets that contain many different environmental influences like rain, snow, or fog. To this date, few datasets, with those features, are available while there exist many datasets recorded under perfect weather conditions. Repurposing those datasets by simulating adverse environmental conditions on top of them and training networks with the resulting enhanced datasets, is intended to lead to more robust neural networks. In the following we propose models to realistically simulate the effects of rain, snow, and fog on LiDAR datasets based on physical and empirical fundamentals. Then we parameterize our simulation to best fit real LiDAR data that was captured in those environments, in order to achieve a highly accurate simulation. Finally, the impact of adverse weather on neural network detection performance is demonstrated.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Simulating Realistic Rain, Snow, and Fog Variations For Comprehensive Performance Characterization of LiDAR Perception


    Beteiligte:
    Teufel, Sven (Autor:in) / Volk, Georg (Autor:in) / Von Bernuth, Alexander (Autor:in) / Bringmann, Oliver (Autor:in)


    Erscheinungsdatum :

    01.06.2022


    Format / Umfang :

    858995 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Rain and Snow Removal

    Tian, Jiandong | Springer Verlag | 2021


    Vehicle rain and snow removing method, vehicle rain and snow removing system and vehicle with vehicle rain and snow removing system

    HUANG HAITAO / HUANG ZHONGSHUI / WANG YAN et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    RAIN AND SNOW INTRUSION ARRESTER

    KITAMURA TOSHIRO | Europäisches Patentamt | 2022

    Freier Zugriff

    Simulating Photo-realistic Snow and Fog on Existing Images for Enhanced CNN Training and Evaluation

    Bernuth, Alexander von / Volk, Georg / Bringmann, Oliver | IEEE | 2019


    Eis-Snow-Rain-Sensoren (ESRS)

    Europäisches Patentamt | 2024

    Freier Zugriff