The images in foggy scenes exhibit poor contrast, reduced saturation, tonal shift and loss of detail, resulting in low accuracy and poor real-time detection of autonomous vehicles, which in turn seriously affects autonomous driving safety and road safety. Therefore, this paper proposes a foggy env-YOLO detection method, which pre-processes the dense fog images with stylisation, highlights the detection target features of the dense fog images, extracts its edge feature map and sends it to the detection model for training as an input along with the light and medium fog images. In addition, the Convolutional Block Attention Module (CBAM) is added to the Cross Stage Partial (CSP) structure of Backbone feature extraction network of Yolov5 to improve the feature extraction ability and thus enhance the detection ability of fog-weather model. Experiments show that in the mixed fog concentration datasets, the improved detection method achieves a detection rate of 93.6% for Mean Average Precision (MAP) and 96.2% for the most common bus, which is better than the detection effect of the same type of Faster-Rcnn, YOLOv5 network under foggy conditions and has better applicability.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle Multi-target Detection in Foggy Scene Based on Foggy env-YOLO Algorithm


    Beteiligte:
    Wang, Xiyun (Autor:in) / Wang, Chao (Autor:in)


    Erscheinungsdatum :

    11.11.2022


    Format / Umfang :

    1282504 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Foggy Drone Teacher: Domain Adaptive Drone Detection Under Foggy Conditions

    Guida Zheng / Benying Tan / Jingxin Wu et al. | DOAJ | 2025

    Freier Zugriff

    Foggy forecast

    Cotey, Angela | IuD Bahn | 2007


    Fahrbericht Foggy FP1

    Schueller,J. / Foggy,GB | Kraftfahrwesen | 2003


    Limitierte Auflage Phantom Foggy

    Meyer,M.H. / Malaguti,IT | Kraftfahrwesen | 1999


    Foggy day expressway traffic safety risk algorithm and foggy day expressway traffic safety risk system

    YIN BOHUA / YUAN YUEMING / HUAN HUAN | Europäisches Patentamt | 2023

    Freier Zugriff