Using results from robust Kalman filtering, we present a new Kalman filter-based snake model for tracking of nonrigid objects in combined spatio-velocity space. The proposed model is the stochastic version of the velocity snake which is an active contour model for combined tracking of position and velocity of nonrigid boundaries. The proposed model uses image gradient and optical flow measurements along the contour as system measurements. An optical-flow based measurement error is used to detect and reject image measurements which correspond to image clutter or to other objects. The method was applied to object tracking of both rigid and nonrigid objects, resulting in good tracking results and robustness to image clutter, occlusions and numerical noise.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust tracking with spatio-velocity snakes: Kalman filtering approach


    Beteiligte:


    Erscheinungsdatum :

    01.01.1998


    Format / Umfang :

    1120985 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Robust Tracking with Spatio-Velocity Snakes: Kalman Filtering Approach

    Peterfreund, N. / IEEE; Computer Society | British Library Conference Proceedings | 1998


    Robust car tracking using Kalman filtering and Bayesian templates

    Dellaert, Frank / Thorpe, Chuck E. | SPIE | 1998


    Robust car tracking using Kalman filtering and Bayesian templates [3207-38]

    Dellaert, F. / Thorpe, C. E. / SPIE | British Library Conference Proceedings | 1998


    Robust car tracking using Kalman filtering and Bayesian templates [3207-38]

    Dellaert, F. / Thorpe, C. E. / SPIE | British Library Conference Proceedings | 1998