Hierarchical methods that divide target classes into nested sets of progressive generality are increasingly important in large-scale classification tasks. Additionally, large-scale classification over many classes typically requires a large number of features, which necessitates larger amounts of training data. In this work, we leverage class hierarchies to mitigate data paucity in large-scale problems. We combine sparse classification methods with a hidden Markov tree model to identify and exploit feature saliency across different levels in a class taxonomy. By modeling the hierarchical persistence of salient features, the proposed method is designed to improve classification performance in scenarios where training data is limited and high dimensional. Examples demonstrate efficacy of the approach on several measured datasets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Sparse Feature-Persistent Hierarchical Classification


    Beteiligte:
    Diehl, Ashley (Autor:in) / Ash, Josh (Autor:in)


    Erscheinungsdatum :

    15.07.2024


    Format / Umfang :

    922075 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Hierarchical classification of images by sparse approximation

    Kim, B. s. / Park, J. Y. / Gilbert, A. C. et al. | British Library Online Contents | 2013


    Hierarchical Visual Localization Based on Sparse Feature Pyramid for Adaptive Reduction of Keypoint Map Size

    Potapov, Andrei / Kurenkov, Mikhail / Karpyshev, Pavel et al. | IEEE | 2023



    Driver’s head pose estimation using a hierarchical classification on an effective feature space

    Ghaffari, Ali / Rezvan, Mahdieh / Khodayari, Alireza et al. | SAGE Publications | 2012