This paper presents a road selection strategy for novel road-matching methods that are designed to support real-time navigational features within Advanced Driving-Assistance Systems (ADAS). Selecting the most likely segment(s) is a crucial issue for the road-matching problem. The selection strategy merges several criteria using Belief theory. Particular attention is given to the development of belief functions from measurements and estimations of relative distances, headings, and velocities. Experimental results using data from antilock brake system sensors, the differential Global Positioning System receiver, and the accurate digital roadmap illustrate the performances of this approach, particularly in ambiguous situations


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Road Selection Using Multicriteria Fusion for the Road-Matching Problem


    Beteiligte:


    Erscheinungsdatum :

    01.06.2007


    Format / Umfang :

    1304941 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch