In order to experiment the performance of some popular ANN algorithms to OMIS (Operational Modular Imaging Spectrometer) hyperspectral image, three widely used ANNs, including Back Propagation Neural Network (BPNN), Radial Basis Function Neural Network (RBFNN), Fuzzy ARTMAP network and their improvements, are employed and compared. It is concluded that ANN classifiers perform much better than traditional classifiers such as SAM, MLC and MDC, and RBFNN outperforms BPNN and Fuzzy ARTMAP in terms of classification accuracy. It is also concluded that dimensionality reduction by PCA can be effectively used to feature extraction for hyperspectral image classification.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    ANN Classification of OMIS Hyperspectral Remotely Sensed Imagery: Experiments and Analysis


    Beteiligte:
    Du, Peijun (Autor:in) / Tan, Kun (Autor:in) / Zhang, Wei (Autor:in) / Yan, Zhigang (Autor:in)


    Erscheinungsdatum :

    01.05.2008


    Format / Umfang :

    446363 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Digital Processing of Remotely Sensed Imagery

    Green, William B. | NTRS | 1997


    Enabling Knowledge on Demand from Remotely Sensed Imagery

    Cromp, R. / IEEE; Aerospace and Electronics Systems Society | British Library Conference Proceedings | 1998


    Removal of the atmospheric blurring from remotely sensed earth imagery

    Kusaka, T. / Haba, Y. / Kawata, Y. et al. | Tema Archiv | 1978