We present a framework for the classification of visual processes that are best modeled with spatio-temporal autoregressive models. The new framework combines the modeling power of a family of models known as dynamic textures and the generalization guarantees, for classification, of the support vector machine classifier. This combination is achieved by the derivation of a new probabilistic kernel based on the Kullback-Leibier divergence (KL) between Gauss-Markov processes. In particular, we derive the KL-kernel for dynamic textures in both 1) the image space, which describes both the motion and appearance components of the spatio-temporal process, and 2) the hidden state space, which describes the temporal component alone. Together, the two kernels cover a large variety of video classification problems, including the cases where classes can differ in both appearance and motion and the cases where appearance is similar for all classes and only motion is discriminant. Experimental evaluation on two databases shows that the new classifier achieves superior performance over existing solutions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Probabilistic kernels for the classification of auto-regressive visual processes


    Beteiligte:
    Chan, A.B. (Autor:in) / Vasconcelos, N. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    247805 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Classification and Retrieval of Traffic Video Using Auto-Regressive Stochastic Processes

    Chan, A. B. / Vasconcelos, N. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2005




    Practical generation of video textures using the auto-regressive process

    Campbell, N. / Dalton, C. / Gibson, D. et al. | British Library Online Contents | 2004