In this paper, a real-time traffic sign detection and classification system with several contributions to improve the different phases of sign detection and classification is introduced. This work is a part of Automatic Driver Evaluation System (ADES) Project. The proposed system uses affine transformation coefficients as genetic algorithm parameters for sign detection. For the classification phase, the results show that neural networks are better than support vector machines for this specific application. The processing times and error rates show that this system can be used as a part of complex real-time applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-time traffic sign detection and classification method for intelligent vehicles


    Beteiligte:
    Kaplan, Kemal (Autor:in) / Kurtul, Caner (Autor:in) / Levent Akin, H. (Autor:in)


    Erscheinungsdatum :

    01.07.2012


    Format / Umfang :

    473788 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Towards Real-Time Traffic Sign Detection and Classification

    Yang, Yi / Luo, Hengliang / Xu, Huarong et al. | IEEE | 2016



    Real-Time Traffic Sign Detection and Recognition for Intelligent Vehicle

    Zhang, M. / Liang, H. / Wang, Z. et al. | British Library Conference Proceedings | 2014


    Real-Time Traffic Sign Detection For Autonomous Vehicles Using Improved YOLOv8

    Henlin, Ryan Christian / Ginting, Bella Arsita / Edbert, Ivan Sebastian et al. | IEEE | 2024


    An Overview of Real-Time Traffic Sign Detection and Classification

    Taki, Youssef / Zemmouri, Elmoukhtar | Springer Verlag | 2021