Content-based multimedia information retrieval (MIR) has become one of the most active research areas in the past few years. Many retrieval approaches based on extracting and representing visual properties of multimedia data have been developed. While these approaches establish the viability of MIR based on visual features, techniques for incorporating human expertise directly during the query process to improve retrieval performance have not drawn enough attention. To address this limitation, this paper introduces a human-computer interaction based approach to MIR in which the user guides the system during retrieval using relevance feedback. Our experiments show that the retrieval performance improves significantly by incorporating humans in the retrieval process


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A relevance feedback architecture for content-based multimedia information retrieval systems


    Beteiligte:
    Yong Rui, Yong Rui (Autor:in) / Huang, T.S. (Autor:in) / Mehrotra, S. (Autor:in) / Ortega, M. (Autor:in)


    Erscheinungsdatum :

    01.01.1997


    Format / Umfang :

    862249 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Relevance Feedback Architecture for Content-based Multimedia Information Retrieval Systems

    Rui, Y. / Huang, T. S. / Mehrotra, S. et al. | British Library Conference Proceedings | 1997


    Interactive Content-Based Image Retrieval Using Relevance Feedback

    MacArthur, S. D. / Brodley, C. E. / Kak, A. C. et al. | British Library Online Contents | 2002


    Bayesian Relevance Feedback for Content-based Image Retrieval

    Vasconcelos, N. / Lippman, A. / IEEE | British Library Conference Proceedings | 2000


    Multi-class relevance feedback content-based image retrieval

    Peng, J. | British Library Online Contents | 2003