Recently various approaches for extracting facial features to recognize facial expression have recently gained importance in the field of human-robot interaction. Facial expressions like happy, anger, sad, surprise are contributing towards representing human behavior. This paper presents a most important technique i.e. Histogram of Oriented Gradient (HOG) for feature extraction. Classifiers like K-NN, SVM are proposed for recognition. MATLAB 2018(a) software, in Windows 10, 64-bit operating system is used for implementation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Analysis of Facial Expression Recognition using Histogram of Oriented Gradient (HOG)


    Beteiligte:


    Erscheinungsdatum :

    01.06.2019


    Format / Umfang :

    2615368 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Facial Expression Recognition based on Gabor Wavelet Transform and Histogram of Oriented Gradients

    Xu, Xiaoming / Quan, Changqin / Ren, Fuji | British Library Conference Proceedings | 2015


    libHOG: Energy-Efficient Histogram of Oriented Gradient Computation

    Iandola, Forrest N. / Moskewicz, Matthew W. / Keutzer, Kurt | IEEE | 2015


    Pedestrian recognition using stereo vision and Histogram of Oriented Gradients

    Toya, Ayato / Hu, Zhencheng / Yoshida, Takehumi et al. | IEEE | 2008


    Civil aircraft surface defects detection based on histogram of oriented gradient

    Jiachen, Guo / Juan, Xu / Hongfu, Zuo et al. | IEEE | 2019


    An analysis of facial expression recognition under partial facial image occlusion

    Kotsia, I. / Buciu, I. / Pitas, I. | British Library Online Contents | 2008