Understanding and organizing data is the first step toward exploiting sensor phenomenology. What features are good for distinguishing people and what measurements, or combination of measurements, can be used to classify people by demographic characteristics including gender? Dimension reduction techniques such as Diffusion Maps that intuitively make sense [1] and Principal Component Analysis (PCA) have demonstrated the potential to aid in extracting such features. This paper briefly describes the Diffusion Map technique and PCA. More importantly, it compares two different classifiers, K-Nearest Neighbors (KNN) and Adaptive boost (Adaboost), for gender classification using these two dimension reduction techniques. The results are compared on the Civilian American and European Surface Anthropometry Resource Project (CAESAR) database, provided by the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate and SAE International. We also compare the results described herein with those of other classification work performed on the same dataset, for completeness.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A limited comparative study of dimension reduction techniques on CAESAR


    Beteiligte:
    Patrick, J (Autor:in) / Clouse, H S (Autor:in) / Mendoza-Schrock, O (Autor:in) / Arnold, G (Autor:in)


    Erscheinungsdatum :

    01.07.2010


    Format / Umfang :

    978313 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    CAESAR concept

    Elaasar, Maged | NTRS | 2018


    CAESAR 2

    Elaasar, Maged | NTRS | 2017


    The CAESAR Program

    Elaasar, Maged | NTRS | 2018


    Comparing Dimension Reduction Techniques for Document Clustering

    Tang, B. / Shepherd, M. / Heywood, M. I. et al. | British Library Conference Proceedings | 2005


    Die Caesar-Biographie Suetons

    Hänisch, Enno | GWLB - Gottfried Wilhelm Leibniz Bibliothek | 1937