Maritime data, such as Automatic Identification System (AIS)-based, are characterized as high volume and complex. Utilizing these data and discovering potential value is challenging for the maritime domain. This paper provides a framework for visual analysis of ship trajectory data. This framework first performs a wrangling process to get clean data. Then the density of ships over the map is estimated by the kernel density estimator (KDE). Furthermore, an interactive 3D model is carried out based on the estimated density for further analysis. We applied the framework to analyze the shipping traffic in the Qiongzhou Strait of China. The results prove that our framework can efficiently depict the ship’s trajectory and regional ship operation and analyze the ship’s behavior in a local area. We assert our work can fruitfully support further analysis and prediction of the ship’s movement mode and detection of abnormal behavior.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Visual Analysis of Ship Trajectories Based on Kernel Density Estimation


    Beteiligte:
    Shi, Juhong (Autor:in) / Pan, Yushan (Autor:in) / Xiang, Yang (Autor:in) / Liu, Xinpeng (Autor:in) / Wang, Yihong (Autor:in) / Ji, Chengtao (Autor:in)


    Erscheinungsdatum :

    12.05.2023


    Format / Umfang :

    6822820 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Generating lane level road data from vehicle trajectories using Kernel Density Estimation

    Uduwaragoda, E.R.I.A.C.M. / Perera, A.S. / Dias, S.A.D. | IEEE | 2013



    Knowledge-based clustering of ship trajectories using density-based approach

    Liu, Bo / de Souza, Erico N. / Matwin, Stan et al. | IEEE | 2014


    Trajectory learning and analysis based on kernel density estimation

    Zhou, Jianying / Wang, Kunfeng / Tang, Shuming et al. | IEEE | 2009