In order to improve the intelligence of the ship and ensure the safety and reliability of the ship during navigation. Based on the deep Q-network algorithm in the field of deep reinforcement learning, this paper studies of ship intelligent collision avoidance and navigation to enable the ship to autonomously carry out collision avoidance operations and reach the goal without manual operation. According to the characteristics of actual waters, several simulated water environments are designed to study the collision avoidance and navigation training effects of ships based on algorithms. Combining collision avoidance and navigation problems with ship motion characteristics, a reasonable state space, reward function, and Q-value neural network structure are optimized. It enables the ship to choose appropriate actions according to the environmental conditions, conduct static and dynamic obstacle avoidance and navigation. There are multiple ships in the experimental environment, including different ship encounter situations, which has certain practical significance. Simulation experiments have proved the effectiveness of the algorithm. After training, the ships can smoothly complete collision avoidance and navigation operations, which can effectively reduce the risk of ship collision.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Intelligent Ships Collision Avoidance and Navigation Method Based on Deep Reinforcement Learning


    Beteiligte:
    Liu, Jin (Autor:in) / Xiao, Youan (Autor:in)


    Erscheinungsdatum :

    01.09.2021


    Format / Umfang :

    1547507 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    COLREGs-Compliant Collision Avoidance Method for Autonomous Ships via Deep Reinforcement Learning

    Wang, Leihao / Zhang, Xinyu / Wang, Chengbo et al. | TIBKAT | 2022


    COLREGs-Compliant Collision Avoidance Method for Autonomous Ships via Deep Reinforcement Learning

    Wang, Leihao / Zhang, Xinyu / Wang, Chengbo et al. | Springer Verlag | 2022


    COLREGs-Compliant Collision Avoidance Method for Autonomous Ships via Deep Reinforcement Learning

    Wang, Leihao / Zhang, Xinyu / Wang, Chengbo et al. | British Library Conference Proceedings | 2022



    Vision-based Distributed Multi-UAV Collision Avoidance via Deep Reinforcement Learning for Navigation

    Huang, Huaxing / Zhu, Guijie / Fan, Zhun et al. | ArXiv | 2022

    Freier Zugriff