A new particle filter, kernel particle filter (KPF), is proposed for visual tracking for multiple objects in image sequences. The KPF invokes kernels to form a continuous estimate of the posterior density function and allocates particles based on the gradient derived from the kernel density estimate. A data association technique is also proposed to resolve the motion correspondence ambiguities that arise when multiple objects are present. The data association technique introduces minimal amount of computation by making use of the intermediate results obtained in particle allocation. We show that KPF performs robust multiple object tracking with improved sampling efficiency.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multiple object tracking with kernel particle filter


    Beteiligte:
    Cheng Chang, (Autor:in) / Ansari, R. (Autor:in) / Khokhar, A. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    685418 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Fast Multiple Object Tracking via a Hierarchical Particle Filter

    Yang, C. / Duraiswami, R. / Davis, L. et al. | British Library Conference Proceedings | 2005


    Fast multiple object tracking via a hierarchical particle filter

    Changjiang Yang, / Duraiswami, R. / Davis, L. | IEEE | 2005


    Particle Filter Methods for Space Object Tracking

    McCabe, James S. / DeMars, Kyle J. | AIAA | 2014



    Multiple Kernel Tracking with SSD

    Hager, G. / Dewan, M. / Stewart, C. et al. | British Library Conference Proceedings | 2004