This paper presents a discussion on semi-supervised learning of probabilistic mixture model classifiers for face detection. We present a theoretical analysis of semi-supervised learning and show that there is an overlooked fundamental difference between the purely supervised and the semisupervised learning paradigms. While in the supervised case, increasing the amount of labeled training data is always seen as a way to improve the classifier’s performance, the converse might also be true as the number of unlabeled data is increased in the semi-supervised case. We also study the impact of this theoretical finding on Bayesian network classifiers, with the goal of avoiding the performance degradation with unlabeled data. We apply the semisupervised approach to face detection and we show that learning the structure of Bayesian network classifiers enables learning good classifiers for face detection with a small labeled set and a large unlabeled set.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Semi-Supervised Face Detection


    Beteiligte:
    Sebe, N. (Autor:in) / Cohen, I. (Autor:in) / Huang, T.S. (Autor:in) / Gevers, T. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    418897 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Mahalanobis distance-based semi-supervised discriminant analysis for face recognition

    Jun, S. / Caikou, C. | British Library Online Contents | 2011


    A Semi-Supervised Learning Algorithm for Growing Neural Gas in Face Recognition

    Zaki, S. M. / Yin, H. | British Library Online Contents | 2008


    Semi-supervised adapted HMMs for unusual event detection

    Dong Zhang, / Gatica-Perez, D. / Bengio, S. et al. | IEEE | 2005