Car driving safety represents one of the major targets of the ADAS (Advanced Driver Assistance Systems) technologies deeply investigated by the scientific community and car makers. From intelligent suspension control systems to adaptive braking systems, the ADAS solutions allows to significantly improve both driving comfort and safety. The aim of this contribution is to propose a driving safety assessment system based on deep networks equipped with self-attention Criss-Cross mechanism to classify the driving road surface combined with a physio-based drowsiness monitoring of the driver. The retrieved driving safety assessment performance confirmed the effectiveness of the proposed pipeline.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Intelligent Road Surface Deep Embedded Classifier for an Efficient Physio-Based Car Driver Assistance


    Beteiligte:
    Rundo, F. (Autor:in) / Leotta, R. (Autor:in) / Piuri, V. (Autor:in) / Genovese, A. (Autor:in) / Scotti, F. (Autor:in) / Battiato, S. (Autor:in)


    Erscheinungsdatum :

    11.08.2021


    Format / Umfang :

    935420 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Driver Assistance and Road Safety

    Kühn, Matthias / Hannawald, Lars | Springer Verlag | 2015


    Lateral driving assistance using robust control and embedded driver-vehicle-road model

    Mammar, Said / Raharijaona, Thibaut / Glaser, Sebastien et al. | Tema Archiv | 2004


    Lateral driving assistance using robust control and embedded driver-vehicle-road model

    Mammar, S. / Raharijaona, T. / Glaser, S. et al. | British Library Conference Proceedings | 2004


    Lateral driving assistance using robust control and embedded driver-vehicle-road model

    Mammar,S. / Raharijaona,T. / Glaser,S. et al. | Kraftfahrwesen | 2004