We consider the problem of segmentation of images that can be modelled as piecewise continuous signals having unknown, nonstationary statistics. We propose a solution to this problem which first uses a regression framework to estimate the image PDF, and then mean-shift to find the modes of this PDF. The segmentation follows from mode identification wherein pixel clusters or image segments are identified with unique modes of the multimodal PDF. Each pixel is mapped to a mode using a convergent, iterative process. The effectiveness of the approach depends upon the accuracy of the (implicit) estimate of the underlying multimodal density function and thus on the bandwidth parameters used for its estimate using Parzen windows. Automatic selection of bandwidth parameters is a desired feature of the algorithm. We show that the proposed regression-based model admits a realistic framework to automatically choose bandwidth parameters which minimizes a global error criterion. We validate the theory presented with results on real images.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Regression based bandwidth selection for segmentation using Parzen windows


    Beteiligte:
    Singh, (Autor:in) / Ahuja, (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    686963 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Regression Based Bandwidth Selection for Segmentation Using Parzen Windows

    Singh, M. / Ahuja, N. / IEEE | British Library Conference Proceedings | 2003


    Kernel K-means Clustering Algorithm Based on Parzen-window Estimation

    Liang, QIN / Wenguang, ZHANG / Zhen, WANG et al. | IEEE | 2018



    Mean-Shift Segmentation with Wavelet-based Bandwidth Selection

    Singh, M. K. / Ahuja, N. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2002


    An improved Bayes fusion algorithm with the Parzen window method

    Gang Wang, / De-gan Zhang, / Hai Zhao, | IEEE | 2002