Due to the statistical property of measurement noise varying from time and outliers in engineering applications, the standard Kalman filter is oscillating or even divergent. To solve this problem, a new optimal method is proposed. The measurement covariance is estimated more precisely in time by a replacement of a posteriori covariance at last step with a priori covariance which contains more current information. A novel three-segment function allowing to simultaneously restrain the outliers and tune the a posteriori covariance is presented. The experimental results show that the proposed method outperforms the common robust adaptive filter.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimized Kalman Filter Approach with Innovation-based Outlier Diagnosis


    Beteiligte:
    Ge, Baoshuang (Autor:in) / Zhang, Hai (Autor:in) / Sheng, Wei (Autor:in) / Chen, Jieling (Autor:in)


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    369400 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch