Modeling vehicle-pedestrian interactions in the road environment is essential to develop pedestrian detection and pedestrian crash avoidance systems. In this paper, one novel approach is proposed to estimate the vehicle-pedestrian encountering risk in the road environment based on a large scale naturalistic driving data collection. Considering the difficulty to record actual pedestrian crashes in the naturalistic data collection, the encountering risk is estimated by the chances for driver to meet with pedestrian in the roadway as well as the chances for the driver and pedestrian to get into a potential conflict. Effects of different scenarios consisting of road conditions, pedestrian behaviors, and pedestrian numbers on the risk levels are also evaluated, and significant results are provided.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Estimation of the vehicle-pedestrian encounter/conflict risk on the road based on TASI 110-car naturalistic driving data collection


    Beteiligte:
    Tian, Renran (Autor:in) / Li, Lingxi (Autor:in) / Yang, Kai (Autor:in) / Chien, Stanley (Autor:in) / Chen, Yaobin (Autor:in) / Sherony, Rini (Autor:in)


    Erscheinungsdatum :

    01.06.2014


    Format / Umfang :

    379562 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Animal-Vehicle Encounter Naturalistic Driving Data Collection and Photogrammetric Analysis

    Alden, Andrew Scott / Mayer, Brian / Takahashi, Hiroyuki et al. | SAE Technical Papers | 2016


    Animal-Vehicle Encounter Naturalistic Driving Data Collection and Photogrammetric Analysis

    Alden, Andrew Scott / Mayer, Brian / Mcgowen, Patrick et al. | British Library Conference Proceedings | 2016


    Naturalistic Driving Study: Field Data Collection

    Blatt A. / Pierowicz J. / Flanigan M. et al. | NTIS | 2015


    - Pedestrian-Vehicle Conflict Risk Analysis System

    SONG JEONG SEOB / LEE HYEON SOO / LEE HYUN MI et al. | Europäisches Patentamt | 2018

    Freier Zugriff