A new prediction approach for the railway passenger volume is put forward by means of support vector machine optimized by genetic algorithm (GA-SVM). In GA-SVM model, GA is used to determine training parameters of support vector machine. GA has strong global search capability, which can get optimal solution in short time. Railway passenger volume of China from 1985-2002 is used to illustrate the performance of the proposed GA-SVM model. The experimental results indicate that the GA-SVM method can achieve greater forecasting accuracy than artificial neural network in railway passenger volume forecasting.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Railway Passenger Volume Forecasting Based on Support Vector Machine and Genetic Algorithm


    Beteiligte:
    Chen, Xiaogang (Autor:in)


    Erscheinungsdatum :

    01.06.2009


    Format / Umfang :

    384141 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Railway passenger demand forecasting

    Smith, Tim / Faber, Oscar | IuD Bahn | 1998




    Passenger behavior identification method based on support vector machine

    ZHANG HONGBING / JIANG TINGFEI / XU JIADONG et al. | Europäisches Patentamt | 2023

    Freier Zugriff