Segmentation of moving objects in a scene is difficult for nonstationary cameras, and especially challenging in the presence of fast and unstable environment. To obtain the accurate and real-time segmentation result, we propose an efficient algorithm that combine the ISODATA clustering with scene flow to segment the moving objects using RGB-D cameras. Frist, we apply the ISODATA clustering method to divide the images into geometric clusters. Then, we compute the residuals of the different clusters and labels the clusters to static scene and moving scene. At last, clusters with moving labels are used to compute the scene flow. We segment the moving objects according to the scene flow estimation and residuals. In this way, we make it possible that segment the moving objects from a moving platform in real-time. We test our algorithm on TUM Datasets and Princeton Tracking Benchmark Datasets and result shows that our method can segment the moving objects in a very low runtime without damaging the accuracy at the same time.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-Time Moving Objects Segmentation based on RGB-D camera


    Beteiligte:
    Zhu, Rui (Autor:in) / Zhao, Yongjia (Autor:in)


    Erscheinungsdatum :

    01.08.2018


    Format / Umfang :

    505360 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Real-Time Segmentation of Moving Objects in a Video Sequence by a Contrario Detection

    Dibos, F. / Pelletier, S. / Koepfler, G. | British Library Conference Proceedings | 2005




    Tracking of fast moving objects in real time

    Kruglov, A. V. / Kruglov, V. N. | British Library Online Contents | 2016


    Fast Object Segmentation from a Moving Camera

    Arnell, F. / Petersson, L. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2005