Behavior analysis of vehicles surrounding the egovehicle is an essential component in safe and pleasant autonomous driving. This study develops a framework for activity classification of observed on-road vehicles using 3D trajectory cues and a Long Short Term Memory (LSTM) model. As a case study, we aim to classify maneuvers of surrounding vehicles at four way intersections. LIDAR, GPS, and IMU measurements are used to extract ego-motion compensated surround trajectories from data clips in the KITTI benchmark. The impact of different prediction label space choices, feature space input, noisy/missing trajectory data, and LSTM model architectures are analyzed, presenting the strengths and limitations of the proposed approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Surround vehicles trajectory analysis with recurrent neural networks


    Beteiligte:


    Erscheinungsdatum :

    01.11.2016


    Format / Umfang :

    951755 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    SURROUND MONITORING SYSTEM FOR VEHICLES

    ASHLEY JONATHAN DAVID | Europäisches Patentamt | 2019

    Freier Zugriff

    Surround monitoring system for vehicles

    ASHLEY JONATHAN DAVID | Europäisches Patentamt | 2021

    Freier Zugriff

    Encoding Bird's Trajectory using Recurrent Neural Networks

    Ardakani, Ilya S. / Hashimoto, Koichi | British Library Conference Proceedings | 2017


    Relational Recurrent Neural Networks For Vehicle Trajectory Prediction

    Messaoud, Kaouther / Yahiaoui, Itheri / Verroust-Blondet, Anne et al. | IEEE | 2019


    EXTENDABLE SURROUND IMAGE CAPTURE SYSTEM FOR VEHICLES

    CHANG TEDDY | Europäisches Patentamt | 2015

    Freier Zugriff