In recent years, there has been the opportunity to execute data fusion methods onboard a multi-sensor system. Typically, the motivation was to process the sensor data at the collection location, but the processing power was limited. Hence, for many decades, the limitation of edge-based (or far edge) was only available to systems with small-data message processing. Currently, processing larger-size data at the device edge is possible and has been coordinated with text, imagery, seismic, acoustic, and radar sensing. Hence, future edge-based heterogeneous data fusion methods would be facilitated from various architectures developed from big data, cyber-physical sensing, machine learning, and software advancements. This paper compares cloud-fog-edge developments to support data fusion multi-domain architecture considerations. A feasibility study shows the benefits of fog computing using the analytical hierarchy processing (AHP) metrics of timeliness, accuracy, confidence/credibility, throughput, and security.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fusion Orchestration Guidelines (FOG) for Collaborative Computing and Network Data Fusion


    Beteiligte:
    Blasch, Erik (Autor:in)


    Erscheinungsdatum :

    28.08.2023


    Format / Umfang :

    2216443 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Quantum Computing for Applications in Data Fusion

    Stoos, Veit / Ulmke, Martin / Govaers, Felix | IEEE | 2023


    Vehicle-road collaborative mixed traffic flow data fusion method

    ZHANG WEISHI / QIN HAO | Europäisches Patentamt | 2024

    Freier Zugriff

    Collaborative Observation-Based Resilient Navigation Fusion

    Wang, Rong / Xiong, Zhi / Liu, Jianye | Springer Verlag | 2023


    Collaborative Localization-Based Resilient Navigation Fusion

    Wang, Rong / Xiong, Zhi / Liu, Jianye | Springer Verlag | 2023


    Remote sensing data fusion algorithms with parallel computing

    Akoguz, Alper / Kent Pinar, Sedef / Ozdemir, Adnan et al. | IEEE | 2013