We study the problem of predicting travel times for links (road segments) using floating car data. We present four different methods for predicting travel times and discuss the differences in predicting on congested and uncongested roads. We show that estimates of the current travel time are mainly useful for prediction on links that get congested. Then we examine the problem of predicting link travel times when no recent probe car data is available for estimating current travel times. This is a serious problem that arises when using probe car data for prediction. Our solution, which we call geospatial inference, uses floating car data from nearby links to predict travel times on the desired link. We show that geospatial inference leads to improved travel time estimates for congested links compared to standard methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Predicting link travel times from floating car data


    Beteiligte:
    Jones, Michael (Autor:in) / Geng, Yanfeng (Autor:in) / Nikovski, Daniel (Autor:in) / Hirata, Takahisa (Autor:in)


    Erscheinungsdatum :

    01.10.2013


    Format / Umfang :

    455047 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Model for Predicting Distribution of Link Travel Times for Urban Signalized Roads

    Zheng, Fangfang / van Zuylen, Henk J. / Pu, Yun | Transportation Research Record | 2012


    Floating car based travel times for city logistics

    Ehmke, Jan Fabian | Online Contents | 2012



    Link Travel Time Estimation at Signalized Road Segments with Floating Car Data

    He, Shuyan / Guan, Wei / Qiu, Wei et al. | ASCE | 2008