Despite the wide application of bilinear problems to problems both in computer vision and in other fields, their behaviour under the effects of noise is still poorly understood. In this paper, we show analytically that marginal distributions on the solution components of a bilinear problem can be bimodal, even with Gaussian measurement error. We demonstrate and compare three different methods of estimating the covariance of a solution. We show that the Hessian at the mode substantially underestimates covariance. Many problems in computer vision can be posed as bilinear problems: i.e. one must find a solution to a set of equations of the form.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Noise in bilinear problems


    Beteiligte:
    Haddon, J.A. (Autor:in) / Forsyth, D.A. (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    595145 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Noise in Bilinear Problems

    Haddon, J. / Forsyth, D. / IEEE | British Library Conference Proceedings | 2001


    Solutions to Bilinear H~ Output Feedback Control Problems

    Sasaki, S. / Uchida, K. | British Library Online Contents | 1996


    Heteroscedastic Regression in Computer Vision: Problems with Bilinear Constraint

    Leedan, Y. / Meer, P. | British Library Online Contents | 2000


    Bilinear Voting

    Sapiro, G. / IEEE; Computer Society | British Library Conference Proceedings | 1998


    Bilinear voting

    Sapiro, G. | IEEE | 1998