This paper discusses the challenges of applying the DUDE framework to continuous tone images and the tools used to address these challenges. As in lossless image compression, a key component of the DUDE framework is the determination of a probability distribution for samples of the input (noisy) image, conditioned on their contexts. Thus, we can leverage from tools developed and tested in the context of lossless compression for determining such distributions, together with tools that are specific to the assumptions of the denoising application. These tools combine with the DUDE principles into a framework that yields powerful and practical denoisers for continuous tone images corrupted by a variety of noise processes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The DUDE framework for continuous tone image denoising


    Beteiligte:
    Motta, G. (Autor:in) / Ordentlich, E. (Autor:in) / Ramirez, I. (Autor:in) / Seroussi, G. (Autor:in) / Weinberger, M.J. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    239911 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    The Dude Framework for Continuous Tone Image Denoising

    Motta, G. / Ordentlich, E. / Ramirez, I. et al. | British Library Conference Proceedings | 2005




    Dude Where's My Stars: A Novel Topologically Justified Approach to Star Tracking

    Green, Robert / Cardona, Robert / Cleveland, Jacob et al. | IEEE | 2021


    An Interpretable Image Denoising Framework via Dual Disentangled Representation Learning

    Liang, Yunji / Fan, Jiayuan / Zheng, Xiaolong et al. | IEEE | 2024