In today's world, the accident rate due to negligence of observing traffic signs and not obeying traffic rules has been increasing drastically. By utilization of synthesized training data, which are created from road traffic sign images allows us to overcome the problems of traffic sign detection databases, which vary for countries and regions. This method is used for the generation of a database which consists of synthesized pictures to detect traffic signs under different view-light conditions. With this data set and a perfect Convolutional Neural Network (CNN), we can develop a data driven, traffic sign recognition and detection system which has high detection accuracy and also has high performance ability in training and recognition processes. This ensures less occurrence of accidents and also helps the driver to concentrate on driving rather than observing each and every traffic sign.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Deep Learning Model for Traffic Sign Detection and Recognition using Convolution Neural Network


    Beteiligte:


    Erscheinungsdatum :

    24.06.2022


    Format / Umfang :

    1190487 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic Sign Detection and Recognition using Deep Learning

    Oza, Rudri Mahesh / Geisen, Angelina / Wang, Taehyung | IEEE | 2021


    Traffic Sign Detection and Recognition Using Deep Learning

    Kumar, P. Puneeth / Kishen, R. C. / Ravikumar, M. | Springer Verlag | 2022


    Indian traffic sign detection and recognition using deep learning

    Rajesh Kannan Megalingam / Kondareddy Thanigundala / Sreevatsava Reddy Musani et al. | DOAJ | 2023

    Freier Zugriff

    Traffic Sign Detection and Recognition Using Deep Learning Approach

    Rahman, Umma Saima / Maruf | Springer Verlag | 2023


    German Traffic Sign Recognition Using Convolutional Neural Network

    Santosh, G V S Sree / Kumar, G Chaitanya / Sandeep, G et al. | IEEE | 2022