With the rapid development of electric vehicles (EVs), aggregators can use reliable technology to aggregate widely distributed lithium batteries, enabling deterministic centralized output and effectively participating in multi-time scale grid demand response, thereby achieving significant economic benefits. This paper analyzes demand response across different time scales, such as minutes and hours, and studies the multi-time matching technology of probabilistic profiling techniques. The SOM neural network clustering method is used to aggregate EV loads, and aggregators control the unified charging and discharging behavior of EV batteries. A mixed-integer linear programming optimization algorithm is employed to allocate the aggregated battery resources, ensuring optimal energy distribution. Finally, simulations based on typical daily EV random operation scenarios show an improvement in the revenue and operational satisfaction of EV aggregators, validating the effectiveness of the aggregation technology.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-time Scale Probabilistic Aggregation Technology of Large-scale Electric Vehicle Energy Storage Batteries Participating in Grid Demand Response


    Beteiligte:
    Liu, Liming (Autor:in) / Gao, Liping (Autor:in) / She, Yanjie (Autor:in) / He, Chunqi (Autor:in) / Ren, Jinglei (Autor:in) / Li, Jiang (Autor:in)


    Erscheinungsdatum :

    10.10.2024


    Format / Umfang :

    421794 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Optimized scheduling method and system for electric vehicle aggregator participating in demand response

    LI CHAO / YU ZHENFAN / MENG ZIJIE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Beyond Li-ion batteries for grid-scale energy storage

    Wheeler, Garrett P. / Wang, Lei / Marschilok, Amy C. | TIBKAT | 2022


    Electric vehicle demand response method considering power grid response deviation

    HU ZESHENG / HWU EN-TE / KIM BYEONG CHO et al. | Europäisches Patentamt | 2024

    Freier Zugriff