In recent years, research and development of maritime object detection technology has been conducted to support onboard monitoring, with the goal of eventually realizing autonomous ship operation and remote ship maneuvering. However, in a real-world environment, there may be unknown objects not found in training data, and their detection is challenging. Conventional object detection methods often do not consider the detection of these unknown objects. In this study, we propose a new method for detecting unknown objects when areas of an image differ from expected sea surface characteristics using a GAN-based anomaly detection method. Experiments using a prototype implementation of the system confirmed that the proposed system can detect floating objects on the sea without learning specific objects.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Method for Detecting Unknown Floating Objects in Maritime Environment Using Efficient GAN


    Beteiligte:
    Habuka, Hiromu (Autor:in) / Ohshima, Kohta (Autor:in)


    Erscheinungsdatum :

    10.01.2025


    Format / Umfang :

    5662753 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    LARGE MARITIME FLOATING FACILITY

    MORIMOTO NOBUYOSHI | Europäisches Patentamt | 2017

    Freier Zugriff

    Detecting, segmenting and tracking unknown objects using multi-label MRF inference

    Björkman, M. r. / Bergström, N. / Kragic, D. | British Library Online Contents | 2014


    FLOATING PLATFORM FOR MARITIME SURVEILLANCE

    PEPPAS ANTONIOS | Europäisches Patentamt | 2019

    Freier Zugriff


    FLOATING PLATFORM FOR MARITIME SURVEILLANCE

    PEPPAS ANTONIOS | Europäisches Patentamt | 2021

    Freier Zugriff