Vehicle mobility and control performance on deformable terrains is governed by the complex interaction that occurs at the tire-terrain interface. Unfortunately, on deformable terrains, accurately measuring terrain information is challenging, and discrepancies between assumed and actual parameters can degrade control performance and cause a loss of vehicle mobility. To address these challenges, this paper proposes an online adaptive Model Predictive Control (MPC) framework for autonomous vehicles operating in off-road environments with deformable terrains. First, we develop a physics-informed learning tire model for deformable terrains that is adaptable online and compatible with MPC. A novel Model Predictive Control formulation is presented for autonomous vehicles operating on deformable terrains and the efficacy of the formulation and proposed tire model is evaluated in simulation with Project Chrono. Comparative experiments, with and without online adaptation, highlight improved speed and path tracking performance through online adaptation when a mismatch between assumed and actual terrain parameters is present.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Model Predictive Control on Unknown Deformable Terrains Using Physics-Informed Learning Tire Models


    Beteiligte:
    Onozuka, Yuya (Autor:in) / Dallas, James (Autor:in) / Suminaka, Makoto (Autor:in) / Subosits, John (Autor:in)


    Erscheinungsdatum :

    22.06.2025


    Format / Umfang :

    3841705 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Adaptive Rover Formation Control over Unknown Terrains

    Ganji, Farid / Joshi, Sanjay / Bayard, David | AIAA | 2005



    Adaptive Formation Control for Rovers Traveling over Unknown Terrains

    Farid Ganji / Sanjay Joshi / David Bayard | AIAA | 2006


    Model Predictive Control Technique for Ducted Fan Aerial Vehicles Using Physics-Informed Machine Learning

    Tayyab Manzoor / Hailong Pei / Zhongqi Sun et al. | DOAJ | 2022

    Freier Zugriff

    Energetics-informed hexapod gait transitions across terrains

    Kottege, Navinda / Parkinson, Callum / Moghadam, Peyman et al. | IEEE | 2015