This study presents an optimization framework to address the complexities involved in estimating crash frequency models. The purpose is to efficiently generate and examine a diverse range of model specifications to capture underlying patterns and likely contributing factors. The framework incorporates a mathematical programming formulation and a metaheuristic approach to minimize the Bayesian Information Criterion (BIC) and identify potential model configurations, aiming to provide a deeper comprehension of the data and overcome the limitations of conventional model development approaches. The proposed framework offers to enhance the estimation of crash count data models and provides numerous benefits, including extensive hypothesis testing and uncovering significant insights that have the potential to be disregarded due to restricted or biased hypothesis testing.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Optimization Framework for Crash Count Data Models


    Beteiligte:
    Macias, Paula (Autor:in) / Ahern, Zeke (Autor:in) / Corry, Paul (Autor:in) / Rabbani, Wahi (Autor:in) / Paz, Alexander (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    381824 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Conditional Quantile Analysis for Crash Count Data

    Qin, X. / Reyes, P.E. | British Library Online Contents | 2011


    Conditional Quantile Analysis for Crash Count Data

    Qin, Xiao | Online Contents | 2011


    Statistical Simulation for Modeling Crash Count Data

    Reyes, P.E. / Qin, X. / American Society of Civil Engineers | British Library Conference Proceedings | 2010