Drones bring convenience to humans as well as threats. According to the characteristics of drones, it is imperative to develop corresponding defense systems to detect, track, and strike intrusive drones. Based on the twin network research in the field of target tracking, this paper proposes a detection and tracking fusion algorithm, using new amplification methods to solve the problem of poor detection accuracy of small targets, and using progressive labeling strategies to solve the problem of difficulty in acquiring labeled data sets. The engineering method alleviates the problem of poor generalization ability of the algorithm under some extreme conditions, Comparing the performance of the proposed algorithm with the typical target detection algorithm on the UAV data set, the efficiency of the algorithm is verified.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Combining Faster-RCNN and Convolutional Siamese Network for Aerial Vehicle Tracking


    Beteiligte:
    Peipei, Zhang (Autor:in) / Zhao, Wang (Autor:in) / Guanjun, Wang (Autor:in)


    Erscheinungsdatum :

    14.10.2020


    Format / Umfang :

    244795 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Lane Tracking with Deep Learning: Mask RCNN and Faster RCNN

    Ortatas, Fatma Nur / Cetin, Emrah | IEEE | 2022


    Preprocessed Faster RCNN for Vehicle Detection

    Manana, Mduduzi / Tu, Chunling / Owolawi, Pius Adewale | IEEE | 2018


    Improved Faster RCNN for Traffic Sign Detection*

    Wang, Fei / Li, Yidong / Wei, Yunchao et al. | IEEE | 2020


    Lightweight Spatial-Temporal Contextual Aggregation Siamese Network for Unmanned Aerial Vehicle Tracking

    Qiqi Chen / Jinghong Liu / Faxue Liu et al. | DOAJ | 2024

    Freier Zugriff

    A Faster RCNN-Based Pedestrian Detection System

    Zhao, Xiaotong / Li, Wei / Zhang, Yifang et al. | IEEE | 2016