This study presents a computationally cost-effective modeling approach for a switched reluctance machine (SRM) towards predicting vibration and acoustic noise. In the proposed approach, the SRM is modeled using Finite Element (FE) software for capturing magnetic snapshots from static simulations. Using an advanced field reconstruction method (FRM), these snapshots are used to develop basis functions to estimate magnetic fields under any arbitrary stator excitation and at any desired rotor position. This method includes magnetic properties of the machine and can estimate flux density at once instead of partially predicting it. The vibration model is built in FE software while the acoustic noise is predicted using the analytical method. The proposed study can significantly reduce the computational time for vibration and noise analysis with decent accuracy. Dynamic simulation by finite-element analysis (FEA) software and experimental verification have been carried out to verify the effectiveness of the proposed hybrid model.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Hybrid Time-Efficient Modeling Approach for Acoustic Noise Prediction in SRMs


    Beteiligte:
    Zhang, Ziyan (Autor:in) / Jin, Zichao (Autor:in) / Chen, Chengxiu (Autor:in) / Yaman, Selin (Autor:in) / Krishnamurthy, Mahesh (Autor:in)


    Erscheinungsdatum :

    21.06.2021


    Format / Umfang :

    1216498 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Pressure Oscillations in Aft-Finocyl SRMs

    Laureti, Mariasole / Favini, Bernardo | AIAA | 2019



    SRMS History, Evolution and Lessons Learned

    Jorgensen, G. / Bains, E. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2011


    SRMS History, Evolution and Lessons Learned

    G. Jorgensen / E. Bains | NTIS | 2011