One significant challenge in the construction of visual detection systems is the acquisition of sufficient labeled data. We describe a new technique for training visual detectors which requires only a small quantity of labeled data, and then uses unlabeled data to improve performance over time. Unsupervised improvement is based on the cotraining framework of Blum and Mitchell, in which two disparate classifiers are trained simultaneously. Unlabeled examples which are confidently labeled by one classifier are added, with labels, to the training set of the other classifier. Experiments are presented on the realistic task of automobile detection in roadway surveillance video. In this application, cotraining reduces the false positive rate by a factor of 2 to 11 from the classifier trained with labeled data alone.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Unsupervised improvement of visual detectors using cotraining


    Beteiligte:
    Levin, (Autor:in) / Viola, (Autor:in) / Freund, (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    548006 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Unsupervised Improvement of Visual Detectors Using Co-Training

    Levin, A. / Viola, P. / Freund, Y. et al. | British Library Conference Proceedings | 2003


    Driver Visual Distraction Detection Using Unsupervised Learning Techniques

    Hamieh, Salam / Heiries, Vincent / Al-Osman, Hussein et al. | IEEE | 2023


    Visual tracking with multiple Hough detectors

    Quan, Wei / Li, Tianrui / Gao, Shibin et al. | British Library Online Contents | 2017


    MS3D: Leveraging Multiple Detectors for Unsupervised Domain Adaptation in 3D Object Detection

    Tsai, Darren / Berrio, Julie Stephany / Shan, Mao et al. | IEEE | 2023


    Unsupervised and simultaneous training of multiple object detectors from unlabeled surveillance video

    Celik, H. / Hanjalic, A. / Hendriks, E. A. | British Library Online Contents | 2009