In this paper, we present an intelligent intersection control system for multimodal traffic consisting of regular vehicles, connected vehicles, and autonomous vehicles. The system leverages algorithms such as Time to Collision (TTC), Probabilistic Risk Modeling (PRM), Social Value Orientation (SVO), and Deep Q-Network (DQN) to enhance safety and efficiency at intersections. We simulate these algorithms using the SUMO traffic simulator, evaluating their performance under different traffic conditions. Results show that DQN achieves the shortest average crossing time, while TTC maintains a zero-collision rate, demonstrating a tradeoff between safety and efficiency.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Comparative Study of Intersection Management Algorithms for Autonomous Vehicles


    Beteiligte:
    Yu, Chenyang (Autor:in) / Xiao, Zhaomin (Autor:in) / Zhang, Jinran (Autor:in) / Xu, Zhuoer (Autor:in) / Mai, Zhelu (Autor:in)


    Erscheinungsdatum :

    01.11.2024


    Format / Umfang :

    952337 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Intersection management for autonomous vehicles using iCACC

    Zohdy, Ismail H. / Kamalanathsharma, Raj Kishore / Rakha, Hesham | IEEE | 2012


    Privacy-Preserving Intersection Management for Autonomous Vehicles

    Kokciyan, Nadin / Erdogan, Mustafa / Meral, Tuna Han Salih et al. | BASE | 2018

    Freier Zugriff

    Mixed intersection network management method considering autonomous vehicles

    ZHAO LIYING / CAO NINGBO / YANG HUI | Europäisches Patentamt | 2024

    Freier Zugriff


    A Platoon-Based Intersection Management System for Autonomous Vehicles

    Bashiri, Self / Fleming, Cody | British Library Conference Proceedings | 2017