To serve advanced use-cases in industrial internet of things (IIoT) setups, communication and computation over wireless networks have faced overlapping resource management challenges. Two crucial resources in this context are radio re-sources and computational resources. The problem to achieve the ultra-low latency for mission critical applications is motivating enterprises to invest in offloading capability of computation heavy tasks while retaining the bandwidth efficiency of edge nodes. This work proposes a novel multi-hop offloading framework powered by deep reinforcement learning to aid the edge nodes in making intelligent decisions on task offloading. The proposed method is benchmarked against existing state of the art techniques to measure task completion delay and algorithmic runtime.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-hop Computational Offloading with Reinforcement Learning for Industrial IoT Networks


    Beteiligte:
    Roy, S. Barman (Autor:in) / Tan, Ernest (Autor:in) / Madhukumar, A. S. (Autor:in)


    Erscheinungsdatum :

    01.06.2023


    Format / Umfang :

    1190584 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Adaptive task offloading in V2X networks based on deep reinforcement learning

    Yang, Dengsong / Ni, Baili / Qin, Hao et al. | British Library Conference Proceedings | 2022



    V2V2I VANET Data Offloading Path Using Reinforcement Learning

    Raoof, Raneena / Santhameena, S. | Springer Verlag | 2025