In this paper we study how to compute a dense depth map with panoramic field of view (e.g., 360 degrees) from multi-perspective panoramas. A dense sequence of multiperspective panoramas is used for better accuracy and reduced ambiguity by taking advantage of significant data redundancy. To speed up the reconstruction, we derive an approximate epipolar plane image that is associated with the planar sweeping camera setup, and use one-dimensional window for efficient matching. To address the aperture problem introduced by one-dimensional window matching, we keep a set of possible depth candidates from matching scores. These candidates are then passed to a novel two-pass tensor voting scheme to select the optimal depth. By propagating the continuity and uniqueness constraints non-iteratively in the voting process, our method produces high-quality reconstruction results even when significant occlusion is present. Experiments on challenging synthetic and real scenes demonstrate the effectiveness and efficacy of our method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Efficient dense depth estimation from dense multiperspective panoramas


    Beteiligte:
    Yin Li, (Autor:in) / Chi-Keung Tang, (Autor:in) / Heung-Yeung Shum, (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    1174736 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Efficient Dense Depth Estimation from Dense Multiperspective Panoramas

    Li, Y. / Tang, C. / Shum, H. et al. | British Library Conference Proceedings | 2001


    Multiperspective autostereoscopic display

    Little, G.R. / Gustafson, S.C. / Nikolaou, V.E. | Tema Archiv | 1994


    Depth consistency and vertical disparities in stereoscopic panoramas

    Gurrieri, L.E. / Dubois, E. | British Library Online Contents | 2014


    Recognising Panoramas

    Brown, M. / Lowe, D. / IEEE | British Library Conference Proceedings | 2003


    Lunar panoramas

    Constantine, Mike | Online Contents | 2004