Vehicle trajectories are and can be used in various intelligent transportation systems applications including driver behavior modelling and safety. Video-based approaches have been used to extract a large number of non-cooperative trajectories. However, it is difficult to evaluate the accuracies of the resulting trajectories. An algorithm-specific simulation tool is developed to evaluate the feature-grouping algorithm. We introduce a Kalman smoothing model to estimate vehicle trajectories and compare it with our previous rescaling-based trajectory estimation algorithm using the simulation tool. A comparison with GPS (WAAS) on real video clip is also presented. Our evaluation shows that the feature-based algorithms provide more accurate trajectories than those by previous approaches including one for the NGSIM system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Evaluation of feature-based vehicle trajectory extraction algorithms


    Beteiligte:
    ZuWhan Kim, (Autor:in) / Meng Cao, (Autor:in)


    Erscheinungsdatum :

    01.09.2010


    Format / Umfang :

    796479 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    SHIP TRAJECTORY FEATURE POINT EXTRACTION-BASED SPATIO-TEMPORAL DP METHOD

    MA YONG / JIANG HAIYANG / YAN XINPING | Europäisches Patentamt | 2022

    Freier Zugriff

    Feature Extraction Using Genetic Algorithms

    Nakai, M. / Kotani, M. / Akazawa, K. | British Library Online Contents | 1999


    An Evaluation Strategy of Trajectory Optimization Algorithms for Hypersonic Reentry Vehicle

    Dong, Chunyun / Cai, Yuanli | British Library Online Contents | 2016


    Penetration Trajectory Planning in Complex Mountain Environment Based on Geographic Feature Extraction

    Tian, Jing / Chen, Kang / Fu, Wenxing et al. | Springer Verlag | 2025


    Vehicle trajectory extraction at the exit areas of urban freeways based on a novel composite algorithms framework

    Liu, Ziyang / He, Jie / Zhang, Changjian et al. | Taylor & Francis Verlag | 2023