The probability of detecting m or more pulses contiguously-that is, in a row-from a pulse train of n pulses is determined when the detection of each pulse is an independent Bernoulli trial with probability p. While a general closed-form expression for this probability is not known, we present an analytical procedure that gives the exact expression for the probability of interest for any particular case. We also present simple asymptotic expressions for these probabilities and develop bounds on the probability that the number of pulses that must be observed before m contiguous detections is greater than or less than some particular number. We consider the implications for binary integration in radar and electronic warfare problems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Contiguous pulse binary integration analysis


    Beteiligte:
    Bell, M.R. (Autor:in)


    Erscheinungsdatum :

    01.07.1996


    Format / Umfang :

    3242531 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Contiguous Pulse Binary Integration Analysis

    Bell, M. | Online Contents | 1996



    Contiguous rotational surfaces and their contact line

    Gorshkov, V. V. | British Library Online Contents | 2007


    Contiguous-Band Output MultipleXers (COMUX): An Optimal Design

    Tanne, G. / Toutain, S. / Favennec, J. F. et al. | British Library Conference Proceedings | 1993


    Distributed Binary Integration

    Han, J. | Online Contents | 1993