We introduce a novel method for constructing and selecting scale-invariant object parts. Scale-invariant local descriptors are first grouped into basic parts. A classifier is then learned for each of these parts, and feature selection is used to determine the most discriminative ones. This approach allows robust pan detection, and it is invariant under scale changes-that is, neither the training images nor the test images have to be normalized. The proposed method is evaluated in car detection tasks with significant variations in viewing conditions, and promising results are demonstrated. Different local regions, classifiers and feature selection methods are quantitatively compared. Our evaluation shows that local invariant descriptors are an appropriate representation for object classes such as cars, and it underlines the importance of feature selection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Selection of scale-invariant parts for object class recognition


    Beteiligte:
    Dorko, (Autor:in) / Schmid, (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    1611915 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Selection of Scale-Invariant Parts for Object Class Recognition

    Dorko, G. / Schmid, C. / IEEE | British Library Conference Proceedings | 2003


    Object Class Recognition by Unsupervised Scale-Invariant Learning

    Fergus, R. / Perona, P. / Zisserman, A. et al. | British Library Conference Proceedings | 2003


    Object class recognition by unsupervised scale-invariant learning

    Fergus, R. / Perona, P. / Zisserman, A. | IEEE | 2003


    Scale-Invariant Shape Features for Recognition of Object Categories

    Jurie, F. / Schmid, C. / IEEE Computer Society | British Library Conference Proceedings | 2004