In mobile communication systems, channel aging caused by channel changes continuously poses a challenging issue. However, it would incur significant overhead to estimate the channel state frequently by shortening the pilot period. This paper proposes a channel prediction method for wideband multiple-input multiple-output (MIMO) systems based on Convolutional Long Short-Term Memory Network (ConvLSTM) to tackle channel aging with minimal overhead. This method takes advantage of the properties of ConvLSTM for processing spatiotemporal data, which enhances the time-domain prediction aided by the strong frequency-domain correlation of the wideband channel. The sliding window model is combined to achieve continuous prediction. Newly acquired data from each prediction iteration is employed in ongoing adaptation to channel fluctuations. In order to mitigate the error propagation issues in time-series calculations, the pilot is promptly inserted to update the channel when predictive performance falls below a predefined threshold. Experimental results demonstrate that the approach presented in this paper significantly reduces the pilot overhead while maintaining excellent communication performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Channel Tracking with Minimal Overhead for Wideband MIMO Mobile Communication Systems


    Beteiligte:
    Lv, Siting (Autor:in) / Li, Xiaohui (Autor:in) / Chen, Xingbo (Autor:in) / Liu, Jiawen (Autor:in) / Shi, Mingli (Autor:in)


    Erscheinungsdatum :

    24.06.2024


    Format / Umfang :

    1445651 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Testing MIMO Systems with Coupled Reverberations Chambers: A Wideband Channel Model

    Delangre, O. / De Doncker, P. / Lienard, M. et al. | British Library Conference Proceedings | 2006


    Channel Estimation for Millimeter Wave Wideband Massive MIMO Systems via Tensor Decomposition

    Cheng, Long / Yue, Guangrong / Xiong, Xinyu et al. | IEEE | 2019




    Overhead mobile crane

    LUO XING'AI / LIAO JINBAO | Europäisches Patentamt | 2021

    Freier Zugriff