Robust and accurate unmanned aircraft system (UAS) detection is pivotal in restricted air spaces. Deep learning-based object detection has been proposed to identify the presence of UASs, but it introduces two key challenges. Specifically, deep learning detectors (i) provide point estimates at test-time with no associated measure of uncertainty, and (ii) easily trigger false positive detections for birds and other aerial wildlife. In this work, we propose a novel detection algorithm, which is capable of providing uncertainty quantification (UQ) metrics at test time while also significantly reducing the false positive rate on natural wildlife. Our proposed method consists of using an ensemble of object detectors to generate a distributive estimate of each input prediction. In addition, we measure multiple UQ-based scoring metrics for each input to further validate our model’s effectiveness. Through evaluation on our custom generated UAS dataset, consisting of images captured from deployed cameras, we show that our model provides robust UQ estimates, low false positive rates on wildlife, and significantly improved error rates over singular deep learning detection models.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Uncertainty Quantification-Based Unmanned Aircraft System Detection using Deep Ensembles


    Beteiligte:


    Erscheinungsdatum :

    01.06.2022


    Format / Umfang :

    1393203 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch