Traffic speed data imputation is a fundamental challenge for data-driven transport analysis. In recent years, with the ubiquity of GPS-enabled devices and the widespread use of crowdsourcing alternatives for the collection of traffic data, transportation professionals increasingly look to such user-generated data for a good deal of analysis, planning, and decision support applications. However, due to the mechanics of the data collection process, crowdsourced traffic data such as probe-vehicle data is highly prone to missing observations, making accurate imputation crucial for the success of any application that makes use of that type of data. In this paper, we propose the use of multi-output Gaussian processes (GPs) to model the complex spatial and temporal patterns in crowdsourced traffic data. While the Bayesian nonparametric formalism of GPs allows us to model observation uncertainty, the multi-output extension based on convolution processes effectively enables us to capture complex spatial dependencies between nearby road segments. Using six months of crowdsourced traffic speed data or “probe vehicle data” for several locations in Copenhagen, the proposed approach is empirically shown to significantly outperform popular state-of-the-art imputation methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-Output Gaussian Processes for Crowdsourced Traffic Data Imputation


    Beteiligte:


    Erscheinungsdatum :

    01.02.2019


    Format / Umfang :

    3239366 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Crowdsourced Traffic Calming

    B. Iannucci | NTIS | 2017


    Recognition of Intersection Traffic Regulations from Crowdsourced Data

    Zourlidou, Stefania / Sester, Monika / Hu, Shaohan | DataCite | 2023

    Freier Zugriff

    CROWDSOURCED REALTIME TRAFFIC IMAGES AND VIDEOS

    LI LARRY / LI HANNAH | Europäisches Patentamt | 2020

    Freier Zugriff

    CROWDSOURCED REALTIME TRAFFIC IMAGES AND VIDEOS

    LI LARRY / LI HANNAH | Europäisches Patentamt | 2020

    Freier Zugriff

    Traffic Flow Data Imputation Based on Feature Fusion Attention Imputation Network

    Li, Shuang / Luo, Xianglong / Yang, Jiayu et al. | IEEE | 2023