The detection of anomalous regions in digital images can be used in many applications, such as security, search and rescue operations, hazard identification and industrial inspection. In this work, we present an anomaly detection method based on color and texture features applied to a non-linear one-class classifier, and show that it provides excellent results, even when compared to a two-class classifier. Our approach is lightweight and aimed at its implementation on an onboard computer for an Unmanned Aerial Vehicle.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Anomaly Detection in Aerial Imagery Using Color and Texture Features




    Erscheinungsdatum :

    01.11.2019


    Format / Umfang :

    1903457 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vehicle detection over DOP20 aerial imagery

    Marple GmbH | Mobilithek

    Freier Zugriff

    ANOMALY DETECTION VIA UNMANNED AERIAL DRONE

    HILLER NATHAN D / NEWMAN DANIEL I / TORREZ RAYMUNDO B | Europäisches Patentamt | 2024

    Freier Zugriff

    ANOMALY DETECTION VIA UNMANNED AERIAL DRONE

    HILLER NATHAN D / NEWMAN DANIEL I / TORREZ RAYMUNDO B | Europäisches Patentamt | 2024

    Freier Zugriff

    Object detection in synthetic aerial imagery using deep learning

    Dabbiru, Lalitha / Goodin, Chris / Carruth, Daniel et al. | British Library Conference Proceedings | 2023