Predicting flight delays is an essential task in aviation management that aims to improve customer happiness and operational efficiency by foreseeing delays. Our Neural Fusion Networks (NFN) technique, which blends long short-term memories (LSTM) and recurrent neural network, or RNN, architectures, provides a novel approach to flight delay prediction.Utilizing past flight data, meteorological trends, and other pertinent characteristics, the NFN model exhibits exceptional precision, attaining a 91% prediction accuracy. The NFN technique enables robust and consistent delay predictions by capturing both short-term dependencies and long-term trends in flight data by integrating LSTM and RNN capabilities. This study advances predictive analytics in aviation by providing airlines and airports with an effective tool to proactively control flight delays and enhance overall operational efficiency.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Flight Delay Prediction using Neural Fusion Network




    Erscheinungsdatum :

    04.12.2024


    Format / Umfang :

    755578 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Flight Delay Prediction Using Machine Learning Techniques

    Tijil, Yash / Dwivedi, Nripendra / Srivastava, Satyam Kumar et al. | IEEE | 2024


    Flight Delay Prediction Using Random Forest Classifier

    Rahul, R. / Kameshwari, S. / Pradip Kumar, R. | Springer Verlag | 2021


    Flight Delay Prediction Based on Characteristics of Aviation Network

    Zhou Tan / Gao Qiang / Chen Xin et al. | DOAJ | 2019

    Freier Zugriff

    Flight Delay Prediction using Machine Learning Model

    Kavitha, P.V. / Manoranjani, Ln / Mithra, V. et al. | IEEE | 2022