Autonomous systems in the road transportation network require intelligent mechanisms that cope with uncertainty to foresee the future. In this paper, we propose a multi-stage probabilistic approach for trajectory forecasting: trajectory transformation to displacement space, clustering of displacement time series, trajectory proposals, and ranking proposals. We introduce a new deep feature clustering method, underlying self-conditioned GAN, which copes better with distribution shifts than traditional methods. Additionally, we propose novel distance-based ranking proposals to assign probabilities to the generated trajectories that are more efficient yet accurate than an auxiliary neural network. The overall system surpasses context-free deep generative models in human and road agents trajectory data while performing similarly to point estimators when comparing the most probable trajectory.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Likely, Light, and Accurate Context-Free Clusters-based Trajectory Prediction


    Beteiligte:


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    1475662 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vessel Trajectory Prediction Based on Context-Assisted Information

    Wang, Jianing / Jiao, Lianmeng / Pan, Quan | IEEE | 2024


    AGENT TRAJECTORY PREDICTION USING CONTEXT-SENSITIVE FUSION

    VARADARAJAN BALAKRISHNAN / HEFNY AHMED SAID MOHAMMED / SAPP BENJAMIN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Spatio-Temporal Context Graph Transformer Design for Map-Free Multi-Agent Trajectory Prediction

    Wang, Zhongning / Zhang, Jianwei / Chen, Jicheng et al. | IEEE | 2024

    Freier Zugriff

    Trajectory Prediction for Light Aircraft

    Maeder, Urban / Morari, Manfred / Baumgartner, Thomas Ivar | AIAA | 2011


    Trajectory Prediction for Light Aircraft

    Maeder, U | Online Contents | 2011